
Attribution/License

● Original Materials developed by Mike Shah, Ph.D. (www.mshah.io)
● This slideset and associated source code may not be distributed

without prior written notice

1

Please do not redistribute slides/source without
prior written permission.

http://www.mshah.io

Getting Started with Modern C++
-- A Tour of Features

-- in C++
with Mike Shah

10:00 - 11:00 IST Sat, August 24, 2024
(12:30 AM - 1:30 AM EDT - Sun. August 25, 2024)

60 minutes with Q&A
Introductory/Intermediate Audience

2

Social: @MichaelShah
Web: mshah.io
Courses: courses.mshah.io

www.youtube.com/c/MikeShah
http://tinyurl.com/mike-talks

https://twitter.com/MichaelShah
http://mshah.io
http://courses.mshah.io
http://www.youtube.com/c/MikeShah
http://tinyurl.com/mike-talks

Your Tour Guide for Today
Mike Shah

● Current Role: Teaching Faculty at Yale
University (Previously Teaching Faculty at Northeastern University)

○ Teach/Research: computer systems, graphics, geometry,
game engine development, and software engineering.

● Available for:
○ Contract work in Gaming/Graphics Domains

■ e.g. tool building, plugins, code review
○ Technical training (virtual or onsite) in

Modern C++, D Language, and topics in Software
Design, Performance, or Graphics APIs

● Fun:
○ Guitar, running/weights, traveling, video

games, and cooking are fun to talk to me
about! 3

Web
www.mshah.io

https://www.youtube.com/c/MikeShah
Non-Academic Courses
courses.mshah.io
Conference Talks
http://tinyurl.com/mike-talks

http://www.mshah.io
https://www.youtube.com/c/MikeShah
http://courses.mshah.io
http://tinyurl.com/mike-talks

Code and Slides for the talk

● Code Located here:
https://github.com/MikeShah/T
alks/tree/main/2024/cppindia

● Slides posted after conference at:
○ www.mshah.io

● Live coding the examples from
this (if any) posted at:

○ www.youtube.com/c/MikeShah

4

https://github.com/MikeShah/Talks/tree/main/2024/cppindia
https://github.com/MikeShah/Talks/tree/main/2024/cppindia
http://www.mshah.io
http://www.youtube.com/c/MikeShah

Abstract

Talk Abstract: Modern C++ is a powerful and expressive language used by millions of
programmers. The large C++ ecosystem of libraries and tooling allows C++ developers to
build scalable and fast systems on multiple platforms utilizing techniques from multiple
programming paradigms to conquer many domains in the software industry. That's the
elevator pitch at the least -- so how does one get started in Modern C++ and utilize all these
features of the language?

In this talk, I take audience members on a step-by-step journey to understand the
fundamental pieces of the C++ ecosystem focusing primarily on new features of the Modern
C++ language. In this talk we will focus on new language features and the STL and pointing
out key parts (array, span, smart_pointers, ranges, concepts, and thread) and how these
features improve upon legacy C++ code. Audience members will leave this talk excited
about using a modern version of the language, and what features and libraries can enhance
their experience with C++ going forward.

5

The abstract that you read and enticed you to join me here!

Prerequisites - I assume some C++ experience for this talk (1/2)

6

● If you have not programmed C++
you may benefit from this free
Quick Start on YouTube

○ https://www.youtube.com/playlist?li
st=PLvv0ScY6vfd-R9N-vIDXdd4HO9IY
ATIxJ

● If you have not programmed C++,
you may consider my course
longer course on C++

○ https://courses.mshah.io/courses/qui
ck-start-introduction-to-modern-c-i
mage-loader

Free Playlist on Getting Started with C++ in about 2 hours

https://www.youtube.com/playlist?list=PLvv0ScY6vfd-R9N-vIDXdd4HO9IYATIxJ

https://www.youtube.com/playlist?list=PLvv0ScY6vfd-R9N-vIDXdd4HO9IYATIxJ
https://www.youtube.com/playlist?list=PLvv0ScY6vfd-R9N-vIDXdd4HO9IYATIxJ
https://www.youtube.com/playlist?list=PLvv0ScY6vfd-R9N-vIDXdd4HO9IYATIxJ
https://courses.mshah.io/courses/quick-start-introduction-to-modern-c-image-loader
https://courses.mshah.io/courses/quick-start-introduction-to-modern-c-image-loader
https://courses.mshah.io/courses/quick-start-introduction-to-modern-c-image-loader
https://www.youtube.com/playlist?list=PLvv0ScY6vfd-R9N-vIDXdd4HO9IYATIxJ

Prerequisites - I assume some C++ experience for this talk (2/2)

7

● If you have not programmed C++
you may benefit from this free
Quick Start on YouTube

○ https://www.youtube.com/playlist?li
st=PLvv0ScY6vfd-R9N-vIDXdd4HO9IY
ATIxJ

● If you have not programmed C++,
you may consider my course
longer course on C++

○ https://courses.mshah.io/courses/qui
ck-start-introduction-to-modern-c-i
mage-loader

Free Playlist on Getting Started with C++ in about 2 hours

https://www.youtube.com/playlist?list=PLvv0ScY6vfd-R9N-vIDXdd4HO9IYATIxJ

Let’s Begin!

https://www.youtube.com/playlist?list=PLvv0ScY6vfd-R9N-vIDXdd4HO9IYATIxJ
https://www.youtube.com/playlist?list=PLvv0ScY6vfd-R9N-vIDXdd4HO9IYATIxJ
https://www.youtube.com/playlist?list=PLvv0ScY6vfd-R9N-vIDXdd4HO9IYATIxJ
https://courses.mshah.io/courses/quick-start-introduction-to-modern-c-image-loader
https://courses.mshah.io/courses/quick-start-introduction-to-modern-c-image-loader
https://courses.mshah.io/courses/quick-start-introduction-to-modern-c-image-loader
https://www.youtube.com/playlist?list=PLvv0ScY6vfd-R9N-vIDXdd4HO9IYATIxJ

An Evolving Language (1/3)

8

● The C++ Language and standard
library is evolving every 3 years

● As an example of the evolution --
observe some different ways we can
iterate through a collection over time.

○ These are just examples using various
‘for-loop’ constructs

■ Whether a simple for-loop
■ Using an algorithm
■ Using a for-ranged loop
■ Or using other abstractions

● All of these techniques can be used
and abstracted upon -- this is a brief
example of language evolution

An Evolving Language (2/3)

9

● The C++ Language and standard
library is evolving every 3 years

● As an example of the evolution --
observe some different ways we can
iterate through a collection over
time.

○ These are just examples using various
‘for-loop’ constructs

■ Whether a simple for-loop
■ Using an algorithm
■ Using a for-ranged loop
■ Or using other abstractions

● All of these techniques can be used
and abstracted upon -- this is a brief
example of language evolution

So where does that leave you as a
beginner getting started with modern
C++?

An Evolving Language (3/3)

10

● The C++ Language and standard
library is evolving every 3 years

● As an example of the evolution --
observe some different ways we can
iterate through a collection over
time.

○ These are just examples using various
‘for-loop’ constructs

■ Whether a simple for-loop
■ Using an algorithm
■ Using a for-ranged loop
■ Or using other abstractions

● All of these techniques can be used
and abstracted upon -- this is a brief
example of language evolution

So where does that leave you as a
beginner getting started with modern
C++?

The goal of this talk is to help you
navigate what is important, and
what to focus on when starting C++

5 Questions

11

● This talk is titled: “Getting Started with Modern C++”
○ The landscape of computer programming has changed a great deal since I was a

beginner
○ So today I really want to think hard about what it means to get started and be a

beginner, and what questions I might ask.
● So today’s talk will try to answer 5 questions

1. Why the C++ Programming Language?
2. What is the C++ Ecosystem?
3. Is C++ evolving for the future, and is it worth it if I invest time now?
4. Can you show me some Modern C++?
5. What Modern C++ features should I focus on?

Question #1: Why the C++
Programming Language?

12

Why the C++ Programming Language? (1/2)

13

● C++ is a powerful, versatile, and
expressive language

○ Powerful:
■ This means in terms of speed, compiled C++

○ Versatile:
■ C++ can be found with effective use cases in

nearly every domain: finance, games,
business, web, networks, automotive,
robotics, etc.

○ Expressive:
■ You choose the best abstraction to use in

the language: procedural, object-oriented,
data-oriented, generic, functional, etc.

■ C++ attempts to provide zero-cost
abstractions (or tries to provide tools to
create your own)

https://www.youtube.com/watch?v=rHIkrotSwcc

Why the C++ Programming Language? (2/2)

14

● The language has also been proven the
last 40+ years -- and continues to power
the software world.

○ Whether directly (i.e. applications written in
C++) or otherwise using libraries created in C++
(e.g. Python bindings or wrappers of C++ code)

Why choose C++ for a new project in 2024?

15

● Performance
○ Zero-overhead Principle [cppreference]
○ i.e. “Don’t pay for what you do not use” and the

language “values efficiency”
● Ecosystem

○ Tooling (IDEs, static and dynamic analysis,
linters, build systems, etc.) is widely invested in.

● Portability
○ C++ can be run on the web (wasm or

emscripten), embedded (small devices, game
consoles, robotics), and desktop devices.

● Certification
○ Various C++ compilers are certified for domains

in safety critical domains (e.g. automotive and
aircraft)

https://en.cppreference.com/w/cpp/language/Zero-overhead_principle

C++ Superpowers [from https://www.stroustrup.com/C++.html]

16

C++ is a general-purpose programming language
with a bias towards systems programming that

● is a better C
a. It had time to learn!

● supports data abstraction
a. Information hiding, etc.

● supports object-oriented programming
a. From its Simula roots

● supports generic programming.
a. For reusable algorithms, data structures, and even

compile-time programming
https://www.stroustrup.com/

https://www.stroustrup.com/C++.html
https://www.stroustrup.com/bs_faq.html#difference
https://www.stroustrup.com/bs_faq.html#class
https://www.stroustrup.com/bs_faq.html#oop
https://www.stroustrup.com/bs_faq.html#generic
https://www.stroustrup.com/

C++ Superpowers [from Me]

17

I’ll also go further to add that C++:

● is a productive language
a. lots of library support beyond the standard library

● is evolving to support safer data abstractions
a. smart pointers, std::optional, ranges, etc.

● supports multiple programming paradigms including:
a. generic programming / Object-Oriented / Procedural
b. functional-style programming

i. lambda’s, const, std::function, map (std::transform),
reduce (std::accumulate), filter (std::remove/copy/find_if)

● supports compile-time execution
a. constexpr, meta-programming through templates

What is hard about learning the C++ Language?

18

From my experience teaching and training, there are two things:

1. Understanding the ‘ecosystem’
a. This includes:

i. compilation process, static and dynamic linking
ii. How to structure large-scale and long-lived projects [Lakos]

2. Being disciplined about what features you use
a. When you are first learning the language, it can be difficult to try to do things ‘the

right way’
i. ‘The right way’ will depend on your domain.

ii. C++ does not have the same guardrails as languages like DLang, Rust, Ada,
Swift, etc. for safety.
1. This is a double-edged sword

https://www.amazon.com/Large-Scale-Architecture-Addison-Wesley-Professional-Computing/dp/0201717069/

Question #2: What is the
C++ Ecosystem?

19

C++ Ecosystem of Tools

20

● Compiler
○ g++, clang++, msvc, etc.

● Linker
○ ld

● IDE / Text Editor
○ IDE’s: Visual Studio, CLion, XCode, etc.
○ Text Editor: VIM, VSCode, Sublime, etc.

● Build Systems
○ Make, Ninja, etc.
○ Cmake - meta-build tool

● Tooling
○ Static Analysis (Linters like cppcheck, Misra Check, etc.)
○ Dynamic Analysis (Asan, tsan, UBsan)
○ Debugging Tools (GDB, LLDB, UDB (Time Travel Debugging), etc.)
○ Profilers (e.g. perf)

● Key Libraries to your project
○ Testing frameworks (Catch, Google Test)
○ Domain specific frameworks (e.g. GUI library, graphics API, sound API, threading library, etc.)

https://courses.mshah.io/courses/vim
https://undo.io/

C++ Ecosystem of Tools

21

● Compiler
○ g++, clang++, msvc, etc.

● Linker
○ ld

● IDE / Text Editor
○ IDE’s: Visual Studio, CLion, XCode, etc.
○ Text Editor: VIM, VSCode, Sublime, etc.

● Build Systems
○ Make, Ninja, etc.
○ Cmake - meta-build tool

● Tooling
○ Static Analysis (Linters like cppcheck, Misra Check, etc.)
○ Dynamic Analysis (Asan, tsan, UBsan)
○ Debugging Tools (GDB, LLDB, UDB (Time Travel Debugging), etc.)
○ Profilers (e.g. perf)

● Key Libraries to your project
○ Testing frameworks (Catch, Google Test)
○ Domain specific frameworks (e.g. GUI library, graphics API, sound API, threading library, etc.)

At a minimum this is all you need
1. A compiler
2. A linker

a. (usually ‘hidden’ when you’re first
learning)

3. A text editor

No need to complicate things and think you
need more when you’re starting out :)

https://courses.mshah.io/courses/vim
https://undo.io/

C++ Ecosystem of Tools

22

● Compiler
○ g++, clang++, msvc, etc.

● Linker
○ ld

● IDE / Text Editor
○ IDE’s: Visual Studio, CLion, XCode, etc.
○ Text Editor: VIM, VSCode, Sublime, etc.

● Build Systems
○ Make, Ninja, etc.
○ Cmake - meta-build tool

● Tooling
○ Static Analysis (Linters like cppcheck, Misra Check, etc.)
○ Dynamic Analysis (Asan, tsan, UBsan)
○ Debugging Tools (GDB, LLDB, UDB (Time Travel Debugging), etc.)
○ Profilers (e.g. perf)

● Key Libraries to your project
○ Testing frameworks (Catch, Google Test)
○ Domain specific frameworks (e.g. GUI library, graphics API, sound API, threading library, etc.)

Some tips on using your compiler to make your life
easier:

● Compile with:
○ -Wall -Werror -g
○ Use the sanitizers

■ e.g. -fsanitize=undefined
● There are nice lesser known tools (at least with

g++) such as -Weffc++ as well
○ See video here

https://courses.mshah.io/courses/vim
https://undo.io/
https://developers.redhat.com/blog/2014/10/16/gcc-undefined-behavior-sanitizer-ubsan#enter_ubsan
https://www.youtube.com/watch?v=uYuIKSjZu4w&t=2s

C++ Ecosystem of Tools

23

● Compiler
○ g++, clang++, msvc, etc.

● Linker
○ ld

● IDE / Text Editor
○ IDE’s: Visual Studio, CLion, XCode, etc.
○ Text Editor: VIM, VSCode, Sublime, etc.

● Build Systems
○ Make, Ninja, etc.
○ Cmake - meta-build tool

● Tooling
○ Static Analysis (Linters like cppcheck, Misra Check, etc.)
○ Dynamic Analysis (Asan, tsan, UBsan)
○ Debugging Tools (GDB, LLDB, UDB (Time Travel Debugging), etc.)
○ Profilers (e.g. perf)

● Key Libraries to your project
○ Testing frameworks (Catch, Google Test)
○ Domain specific frameworks (e.g. GUI library, graphics API, sound API, threading library, etc.)

● For folks just getting started, I like cppcheck.
○ cppcheck will help detect bugs and help

encourage you to use more modern
constructs in your code.

● Linux users can immediate use:
○ sudo apt-get install cppcheck
○ cppcheck --enable=all *.cpp

https://courses.mshah.io/courses/vim
https://undo.io/
https://cppcheck.sourceforge.io/

C++ Ecosystem of Tools

24

● Compiler
○ g++, clang++, msvc, etc.

● Linker
○ ld

● IDE / Text Editor
○ IDE’s: Visual Studio, CLion, XCode, etc.
○ Text Editor: VIM, VSCode, Sublime, etc.

● Build Systems
○ Make, Ninja, etc.
○ Cmake - meta-build tool

● Tooling
○ Static Analysis (Linters like cppcheck, Misra Check, etc.)
○ Dynamic Analysis (Asan, tsan, UBsan)
○ Debugging Tools (GDB, LLDB, UDB (Time Travel Debugging), etc.)
○ Profilers (e.g. perf)

● Key Libraries to your project
○ Testing frameworks (Catch, Google Test)
○ Domain specific frameworks (e.g. GUI library, graphics API, sound API, threading library, etc.)

● Debugging tools (whether integrated in your
IDE or the command line) are going to be your
next best friend.

○ My recommendation is to at the least
learn GDB (example video here)

■ Terminal based debuggers can be
very powerful, scriptable and
provide text-user interfaces for a
nice experience

https://courses.mshah.io/courses/vim
https://undo.io/
https://www.youtube.com/watch?v=uyyEdaW4M8Y

C++ Project Template

25

● There exist nice templates for
exercising a good chunk of a modern
C++ ecosystem

○ Here is one from Jason Turner for creating
a CMake project

○ The latest repository is here:
■ https://github.com/cpp-best-practi

ces/cmake_template
● Use these as inspiration for creating

your own
○ It may also be wise for you to create your

own ‘template’ as you use C++ in your
domain

○ Most existing templates will probably be
good resources for discovering useful
tools and libraries -- enough so that
expert C++ programmers consider them as
essential enough to put in their default
templates.

C++ Weekly - Ep 376 - Ultimate CMake C++ Starter Template (2023 Updates)

https://www.youtube.com/watch?v=ucl0cw9X3e8

https://github.com/cpp-best-practices/cmake_template
https://github.com/cpp-best-practices/cmake_template
https://www.youtube.com/watch?v=ucl0cw9X3e8

Question #3: Is C++
evolving for the future, and
is it worth it if I invest time

now?

26

What’s really Important?

27

● What’s really important from this timeline is that the language is
evolving every 3 years

● The language (and compiler vendors) make great efforts to support
backward compatibility

○ i.e. Code that you wrote in 1998 often still compiles on compilers in 2024.
■ This can be extremely valuable when you have long lived and core

infrastructure!
● Is it worth the time and effort to learn C++ and the ecosystem?

○ Yes -- I do not see C++ moving away anytime soon in performance critical
domains.

○ Time spent in C++ or alongside other languages will only help you become a better
programmer.

28

C with
Classes
Appears

1979

Today

https://www.stroustrup.com/hopl2.pdf

1985

The C++
Programming
Language
Book is
released

C++ History and
Evolution

From C++98 to C++23 and Beyond

Where the language was and where the
language is going

C++ 98
Standardized

1998 2003 2011 2014 2017

C++26

2020 2023

https://www.stroustrup.com/hopl2.pdf
https://www.lirmm.fr/~ducour/Doc-objets/ISO+IEC+14882-1998.pdf
https://www.lirmm.fr/~ducour/Doc-objets/ISO+IEC+14882-1998.pdf

C++ Modern History (1998-Present Day)

29

● 1998: -- Original ISO C++ Standard officially adopted
(“C++98”).

○ 776 pages.
● 2003: TC1 (“Technical Corrigendum 1”) published (“C++03”).

○ A minor revision in 2003, primarily bug fixes for C++98.
● 2005: TR1 (Library “Technical Report 1”) published.

○ 14 likely new components for the standard library.
● 2011: “C++0x” ratified ⇒ “C++11”.

○ This was a major update that modernized C++ to its current form in
September of 2011

○ 1353 pages.
○ C++ now evolves on an ambitious 3-year schedule.

● 2014: C++14 ratified.
○ 1372 pages -- largely minor improvements to 2011 features

● 2017: (Will visit shortly)
● 2020: (Will visit shortly)
● 2023: (Will visit shortly)
● 2026:

○ Next C++ Standard currently in the works
● Note:

○ Around 2022, what are dubbed as successor languages (cpp2,
Carbon, etc.) also started exploring the evolution of the language

https://en.wikipedia.org/wiki/C%2B%2B

https://en.wikipedia.org/wiki/C%2B%2B

Question #4: Can you show
me some Modern C++?

(i.e. 2003 C++ versus Modern C++)

30

A Classic Example - wc (word count)

31

● A good way to learn or practice
your C++ is to implement various
command line programs

○ If you’re not familiar with the ‘wc’
program, it is a helpful utility for
counting words, lines, and bytes in a
file

● Let’s look at a simple program
and compare C++98 versus C++20
(and beyond) code

● Note:
○ If you’re more senior and listening to

this talk, perhaps this is an interesting
‘take home’ projects for interviewing
candidates -- though I have many
more thoughts on tech interviews :)

wc98 (word count, C++ 98 standard)

32

● (wc98.cpp)
○ g++ -g -Wall -std=c++98 wc98.cpp -o wc98

● Here’s the core
implementation of a word
count (wc) program.

○ It works, and is written in pure
C++98 code.

wc23 (word count, C++ 23 standard)

33

● (wc23.cpp)
○ g++ -g -Wall -std=c++23 wc23.cpp

-o wc23
● Same program as before, but

several improvements using
Modern C++ 11 through C++23
features

● I’ll highlight a few for
comparison

wc23 (word count, C++ 23 standard)

34

● (wc23.cpp)
○ g++ -g -Wall -std=c++23 wc23.cpp

-o wc23
● Same program as before, but

several improvements using
Modern C++ 11 through C++23
features

● I’ll highlight a few for
comparison

Observe on the the right side we can more
concisely default initialize members.
This is useful for Plain Old Data (POD)
data types

wc23 (word count, C++ 23 standard)

35

● (wc23.cpp)
○ g++ -g -Wall -std=c++23 wc23.cpp

-o wc23
● Same program as before, but

several improvements using
Modern C++ 11 through C++23
features

● I’ll highlight a few for
comparison

● No std::filesystem in C++98, so need
hack for reading file size, versus a 1-line
function call in Modern C++

wc23 (word count, C++ 23 standard)

36

● (wc23.cpp)
○ g++ -g -Wall -std=c++23 wc23.cpp

-o wc23
● Same program as before, but

several improvements using
Modern C++ 11 through C++23
features

● I’ll highlight a few for
comparison

● No structured binding
○ Both a pro and con -- need to still

be careful of ordering of struct
○ Easy however to retrieve local

variables
● Can use auto in C++11 and beyond

○ Potentially more ‘refactorable
code’

○ Use type when there is a need to
be explicit

● Can use std::println in C++23 with
format strings

wc23 (word count, C++ 23 standard)

37

● (wc23.cpp)
○ g++ -g -Wall -std=c++23 wc23.cpp

-o wc23
● Same program as before, but

several improvements using
Modern C++ 11 through C++23
features

● I’ll highlight a few for
comparison

● Local lambda functions
○ Simplifies algorithm

■ Measure to see if performance
is impacted

○ Use lambda if function only
needed once, or otherwise as a tool
for encapsulation

wc23 (word count, C++ 23 standard)

38

● Full list of improvements
○ struct with constructor needed

■ Need to carefully default initialize
○ No std::filesystem, so need hack for reading

file size
○ No structured binding

■ Both a pro and con -- need to still be
careful of ordering of struct

■ Easy however to retrieve local
variables

○ Local lambda functions
■ Simplifies algorithm
■ Use lambda if function only needed

once, or otherwise as a tool for
encapsulation

○ Can use auto in C++11 and beyond
■ Potentially more ‘refactorable code’
■ Use type when there is a need to be

explicit
○ Can use std::println in C++23 with format

strings

wc23 (word count, C++ 23 standard)

39

● (wc23.cpp)
○ g++ -g -Wall -std=c++23 wc23_1.cpp -o wc23_1

● Within our word counting function, we can make a further revision
by using std::tuple

○ This removes any temporary or ‘one use’ structs where we need to return multiple
values.

○ Furthermore, our function at this point is fully encapsulated
■ The function is merely an interface generating an output given inputs, and

few details are otherwise exposed to the caller.

Question #5: What Modern
C++ features should I focus

on?

40

What Modern C++ features should I focus on?

41

● The real trick is to work
iteratively

○ For me, I often write code in the
most simple way.

○ Then I figure out if there is some
abstraction I can use to make
code:

■ Safer
■ More understandable
■ More amenable to change

(while designing)
■ More generic (if a library)

○ Over time your ‘muscle memory’
will help you exercise features
correctly (for your definition of
‘correct’ on your project)
otherwise on an earlier iteration

word counter C++98 code word counter C++20 code

A Very Quick Overview

42

● To the right you’ll see a
summary of just the new
features in C++11!

● You can find most all of the
C++11 updates here:

■ https://en.cppreference.co
m/w/cpp/11

● I now want to focus on a few of
the new language and library
features from C++11 to 23 that I
think every C++ programmer
should know in this short
duration

○ Note: This is not an exhaustive list
-- but a few that I find myself
often using!

https://en.cppreference.com/w/cpp/11
https://en.cppreference.com/w/cpp/11

A Few Examples to Focus on

43

● While I cannot highlight everything in this duration -- here are
several features I enjoy in Modern C++:

○ C++11
■ nullptr
■ auto
■ ranged-for
■ constexpr
■ Smart Pointers
■ Move Semantics
■ Lambda’s
■ thread
■ unordered_map

○ C++20
■ Span
■ Ranges

nullptr (Introduced in -std=c++11)

44

● Purpose:
○ Eliminate ‘surprises’ where nullptr

can be treated as an integer -- clear
when you are testing for ‘null’
versus testing for ‘0’

● When to Use:
○ Anywhere you previously used

‘NULL’
● Example Notes:

○ See Core Guideline:
https://isocpp.github.io/CppCore
Guidelines/CppCoreGuidelines#es
47-use-nullptr-rather-than-0-or-n
ull

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#es47-use-nullptr-rather-than-0-or-null
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#es47-use-nullptr-rather-than-0-or-null
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#es47-use-nullptr-rather-than-0-or-null
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#es47-use-nullptr-rather-than-0-or-null

auto (Introduced in -std=c++11)

45

● Purpose:
○ Placeholder for a type that will be

deduced later
● When to Use:

○ Useful when typing a long type
would be redundant

○ Useful for ‘generic code’
○ Useful for making code more

malleable
○ Not useful if you need to be very

specific about type
● Example Notes:

○ ‘auto’ greatly simplifies generic
programming (see lines 8-10) --
effectively this is the equivalent of
a template.

○ See video for more

https://www.youtube.com/watch?v=ITeJbESNH7A&list=PLvv0ScY6vfd8j-tlhYVPYgiIyXduu6m-L&index=72

ranged-for (Introduced in -std=c++11)

46

● Purpose:
○ Iterate through a collection

● When to Use:
○ When your intent is to iterate

through an entire range using
iterators

● Example Notes:
○ Observe in for loop the use of ‘&’
○ Observe in the bottom-right that

the ranged-for is transformed to
use iterators

○ Video for more

https://www.youtube.com/watch?v=arbvC95H4SQ&t=5s

constexpr (Introduced in -std=c++11)

47

● Purpose:
○ Further enable ‘compile-time’

computations
● When to Use:

○ When you want something
‘const’ and also useable (if
possible) at compile-time

○ Can enable very powerful
meta-programming

● Example Notes:
○ This program really just

outputs a ‘12’ (0xC)
○ More introduction here

https://www.youtube.com/watch?v=Ia0MizHPLUA

Smart Pointers (Introduced in -std=c++11)

48

● Purpose:
○ Wrap a ‘pointer’ for safer C++ code and focus

on ‘ownership’ and ‘lifetime’ of allocated
memory

■ If you make everything
std::unique_ptr -- you effectively have
much safer code!

● When to Use:
○ Almost always use std::unique_ptr if only one

owner
○ Consider shared_ptr if managing

complicated lifetimes
■ Consider std::weak_ptr when

non-owner needs access when pointer
is not null or otherwise expired.

○ May need regular raw pointers when
interfacing with C APIs

● Example Notes:
○ More on pointers
○ More on the ‘why’ of smart pointers
○ Consider that you can also create your own

‘smart pointers’ as well! One example with only ‘shared_ptr’ which counts the number of
‘strong references’ (i.e. other shared_ptr) to it.

https://www.youtube.com/watch?v=2R5cjpi9Fzw&t=3s
https://www.youtube.com/watch?v=nd2X5q_rXlc

Move Semantics (Introduced in -std=c++11)

49

● Purpose:
○ For efficiency and idea of ‘ownership’

(safety)
● When to Use:

○ Whenever you want to avoid copies and
ensure ‘one’ copy of data has an ‘owner’

■ Think of using in tandem with
std::unqiue_ptr

● Example Notes:
○ std::move does not ‘move’ -- but rather casts

to an ‘rvalue reference’ that enables move
assignment operator to be called.

○ If you do not have move constructor and/or
move assignment operator, fallback will be
to copy constructor and/or copy assignment
operator.

○ Video on Move

https://www.youtube.com/watch?v=2gUqyt5JTtM&t=2s

Lambdas (Introduced in -std=c++11)

50

● Purpose:
○ Make code more beautiful -- i.e. a

better syntax than a functor
○ In many ways to encourage

● When to Use:
○ Writing smaller functions that are

used in algorithms
○ As ‘local’ functions encapsulated in a

larger function
● Example Notes:

○ I’ve omitted the ‘capture’, but it may
be useful to understand functors first
to understand how ‘state’ is stored as
a member of a functor.

■ i.e. Lambdas in C++11 and
beyond are syntactic sugar for
functors.

○ More videos

https://www.youtube.com/watch?v=6otobPdNFz4&t=2s
https://www.youtube.com/watch?v=R1bwTAarnz4&t=1s

Thread (Introduced in -std=c++11)

51

● Purpose:
○ Usually for performance, but

sometimes nature of task
splits better into ‘jobs’

● When to Use:
○ Again, usually for

performance
○ Consider using std::jthread so

you don’t have to worry about
‘joining’ threads

○ Consider std::async
● Example Notes:

○ More Videos

https://www.youtube.com/watch?v=Q7gqDzOFO7E&list=PLvv0ScY6vfd_ocTP2ZLicgqKnvq50OCXM&index=3

Unordered_map (Introduced in -std=c++11)

52

● Purpose:
○ Improve performance of map from

log2(n) to O(1) in average case
■ unordered_set and other

unordered containers also
introduced

● When to Use:
○ Whenever ordering does not

matter
○ structured bindings handy for

iteration
○ Generally a drop-in replacement

for std::map
● Example Notes:

○ More Videos (less trivial example)

https://www.youtube.com/watch?v=pvVrNwZzCgk

std::span (Introduced in -std=c++20)

53

● Purpose:
○ Refers to an object that is contiguous

(i.e. array, vector)
■ Span is a ‘fat-pointer’ with a

‘length’ and pointer to data
● When to Use:

○ It is effectively a ‘view’ of data that can
read/write

○ Because it is a fat pointer, it prevents
an array to decay to a pointer -- so size
information is preserved

○ Useful if you want to pass any sized
contiguous data structure into a
function and not have it ‘owned’, but
may want to read/write data.

● Example Notes:
○ More Videos

https://www.youtube.com/watch?v=OQu2pZILjDo&t=1s

Ranges (Introduced in -std=c++20)

54

● Purpose:
○ Make code more composable and

less error-prone
● When to Use:

○ Anywhere in the STL you were
passing in two iterators to iterate
over a collection

○ In combination with views, can
perform ‘lazy’ evaluation (for
infinite ranges, or otherwise
optimization purposes)

● Example Notes:
○ You’ll need C++20 for ranges, but

generally speaking ranges are the
path forward.

Wrapping up and More Resources

55

Further C++ resources and training materials

56

● The full C++ playlist
○ https://www.youtube.com/playlist

?list=PLvv0ScY6vfd9wBflF0f6ynlD
QuaeKYzyc

https://www.youtube.com/playlist?list=PLvv0ScY6vfd9wBflF0f6ynlDQuaeKYzyc
https://www.youtube.com/playlist?list=PLvv0ScY6vfd9wBflF0f6ynlDQuaeKYzyc
https://www.youtube.com/playlist?list=PLvv0ScY6vfd9wBflF0f6ynlDQuaeKYzyc

Further C++ resources and training materials

57

● C++ Software Design & Patterns
○ https://www.youtube.com/playlist

?list=PLvv0ScY6vfd8j-tlhYVPYgiIy
Xduu6m-L

● C++ Concurrency
○ https://www.youtube.com/playlist

?list=PLvv0ScY6vfd_ocTP2ZLicgqK
nvq50OCXM

https://www.youtube.com/playlist?list=PLvv0ScY6vfd8j-tlhYVPYgiIyXduu6m-L
https://www.youtube.com/playlist?list=PLvv0ScY6vfd8j-tlhYVPYgiIyXduu6m-L
https://www.youtube.com/playlist?list=PLvv0ScY6vfd8j-tlhYVPYgiIyXduu6m-L
https://www.youtube.com/playlist?list=PLvv0ScY6vfd_ocTP2ZLicgqKnvq50OCXM
https://www.youtube.com/playlist?list=PLvv0ScY6vfd_ocTP2ZLicgqKnvq50OCXM
https://www.youtube.com/playlist?list=PLvv0ScY6vfd_ocTP2ZLicgqKnvq50OCXM

Summary

58

● C++ is a great language, and there is always room to grow
with it

○ You do not need to learn every feature -- but using some of the
modern ones will make your life easier

○ Doing small projects (e.g. building a game, an app, etc.) is how you
will improve and see these features in context.

■ I encourage you to read as much code as you write.
● C++ I foresee continuing to be the leading language for

performance-driven applications, and I think that will
trend will continue to drive its evolution alongside more
safety features

● C++ is here to stay, and it is a language well worth
learning

Getting Started with Modern C++
-- A Tour of Features

-- in C++
with Mike Shah

10:00 - 11:00 IST Sat, August 24, 2024
(12:30 AM - 1:30 AM EDT - Sun. August 25, 2024)

60 minutes with Q&A
Introductory/Intermediate Audience

59

Social: @MichaelShah
Web: mshah.io
Courses: courses.mshah.io

www.youtube.com/c/MikeShah
http://tinyurl.com/mike-talks

Thank you CppIndia for
having me!

https://twitter.com/MichaelShah
http://mshah.io
http://courses.mshah.io
http://www.youtube.com/c/MikeShah
http://tinyurl.com/mike-talks

