Attribution/License

e Original Materials developed by Mike Shah, Ph.D. (www.mshah.io)

e This slideset and associated source code may not be distributed
without prior written notice

Please do not redistribute slides/source without
prior written permission.

http://www.mshah.io

{C +}
CppIndia

diaCon 2024

Cppln

he C++ festival of India.

23 & 24

{C +;}

Cpplndia

Getting Started with Modern C++

Gold Sponsors

think-cell”
—

10:00 - 11:00 IST Sat, August 24, 2024
(12:30 AM - 1:30 AM EDT - Sun. August 25, 2024)

60 minutes with Q&A
Introductory/Intermediate Audience

with Mike Shah

Social: @MichaelShah

Web: mshah.io
Courses: courses.mshah.io
© YouTube

www.vyoutube.com/c/MikeShah
http://tinyurl.com/mike-talks

https://twitter.com/MichaelShah
http://mshah.io
http://courses.mshah.io
http://www.youtube.com/c/MikeShah
http://tinyurl.com/mike-talks

Your Tour Guide for Today

Mike Shah

Current Role: Teaching Faculty at Yale

University

o Teach/Research: computer systems, graphics, geometry,
game engine development, and software engineering.

Available for:
o Contract work in Gaming/Graphics Domains
= e.g.tool building, plugins, code review
o Technical training (virtual or onsite) in
Modern C++, D Language, and topics in Software
Design, Performance, or Graphics APIs
Fun:
o Guitar, running/weights, traveling, video
games, and cooking are fun to talk to me
about!

Web
www.mshah.io

© YouTube

https://www.voutube.com/c/MikeShah
Non-Academic Courses
courses.mshah.io

Conference Talks
http://tinyurl.com/mike-talks

http://www.mshah.io
https://www.youtube.com/c/MikeShah
http://courses.mshah.io
http://tinyurl.com/mike-talks

Code and Slides for the talk

e Code Located here: = () Mikeshah / Talks
httDS://glthUb.COHl/Mll(@Shah/T <> Code () Issues 19 Pullrequests () Actions [Projects
alkS/tI‘ee/maln/2024/c‘p‘p1ndla LD ¥ main ~ Talks / 2024 / cppindia / (3

e Slides posted after conference at:
o www.mshah.io

e Live coding the examples from ame
this (if any) posted at:

o www.youtube.com/c/MikeShah

Mike updates

ascii

[) README.md

(Y we23.cpp

https://github.com/MikeShah/Talks/tree/main/2024/cppindia
https://github.com/MikeShah/Talks/tree/main/2024/cppindia
http://www.mshah.io
http://www.youtube.com/c/MikeShah

Abstract {plr: B The abstract that you read and enticed you to join me here!

Talk Abstract: Modern C++ is a powerful and expressive language used by millions of
programmers. The large C++ ecosystem of libraries and tooling allows C++ developers to
build scalable and fast systems on multiple platforms utilizing techniques from multiple
programming paradigms to conquer many domains in the software industry. That's the
elevator pitch at the least -- so how does one get started in Modern C++ and utilize all these
features of the language?

In this talk, I take audience members on a step-by-step journey to understand the
fundamental pieces of the C++ ecosystem focusing primarily on new features of the Modern
C++ language. In this talk we will focus on new language features and the STL and pointing
out key parts (array, span, smart_pointers, ranges, concepts, and thread) and how these
features improve upon legacy C++ code. Audience members will leave this talk excited
about using a modern version of the language, and what features and libraries can enhance
their experience with C++ going forward.

Prerequisites - I assume some C++ experience for this talk o

If you have not programmed C++
you may benefit from this free

Quick Start on YouTube

o https://www.youtube.com/plavylist?li
st=PLvv0ScY6vid-RON-vIDXdd4HO9IY
ATIxJ

If you have not programmed C++,
you may consider my course

longer course on C++

o https://courses.mshah.io/courses/qui
ck-start-introduction-to-modern-c-i
mage-loader

s, [C++ Quick Start Part 1/4] Quick First Time C++ Introduction to iostream and
vector in 23 minutes
Mike Shah - 3.2K views - 2 years ago
4 22557

[C++ Quick Start Part 2/4] Classes and Compiling multiple files (program
structure) in 25 minutes

Mike Shah - 1.6K views * 2 years ago

[C++ Quick Start Part 3/4] Read, write, and parse files(fstream, string, &

stringstream) in 31 min.
Mike Shah - 6.9K views * 2 years ago

| 33:19

.. | [C++ Quick Start Part 4/4] References, Pointers, and Dynamic Memory Allocation

in 30 minutes
Mike Shah - 1.4K views - 2 years ago

23001

Free Playlist on Getting Started with C++ in about 2 hours

https://www.voutube.com/playlist?list=PLvv0ScY6vfd-RON-vIDXdd4HOIYATIxJ

https://www.youtube.com/playlist?list=PLvv0ScY6vfd-R9N-vIDXdd4HO9IYATIxJ
https://www.youtube.com/playlist?list=PLvv0ScY6vfd-R9N-vIDXdd4HO9IYATIxJ
https://www.youtube.com/playlist?list=PLvv0ScY6vfd-R9N-vIDXdd4HO9IYATIxJ
https://courses.mshah.io/courses/quick-start-introduction-to-modern-c-image-loader
https://courses.mshah.io/courses/quick-start-introduction-to-modern-c-image-loader
https://courses.mshah.io/courses/quick-start-introduction-to-modern-c-image-loader
https://www.youtube.com/playlist?list=PLvv0ScY6vfd-R9N-vIDXdd4HO9IYATIxJ

Let's Begin!

https://www.youtube.com/playlist?list=PLvv0ScY6vfd-R9N-vIDXdd4HO9IYATIxJ
https://www.youtube.com/playlist?list=PLvv0ScY6vfd-R9N-vIDXdd4HO9IYATIxJ
https://www.youtube.com/playlist?list=PLvv0ScY6vfd-R9N-vIDXdd4HO9IYATIxJ
https://courses.mshah.io/courses/quick-start-introduction-to-modern-c-image-loader
https://courses.mshah.io/courses/quick-start-introduction-to-modern-c-image-loader
https://courses.mshah.io/courses/quick-start-introduction-to-modern-c-image-loader
https://www.youtube.com/playlist?list=PLvv0ScY6vfd-R9N-vIDXdd4HO9IYATIxJ

An Evolving Language (1/3)

The C++ Language and standard
library is evolving every 3 years

As an example of the evolution --
observe some different ways we can

iterate through a collection over time.

o These are just examples using various
‘for-loop’ constructs
m Whether a simple for-loop

m Using an algorithm
m Using a for-ranged loop
m Orusing other abstractions

All of these techniques can be used
and abstracted upon -- this is a brief
example of language evolution

nt main(){

std::vector c{1,2,3,4,5};

std::cout << << std::endl;

}

(size t i=0; i < c.capacity(); ++i){
std::cout << c[i] << std::endl;

std::cout << << std::endl;

}

(auto it = c.begin();
it !'= c.end();
++it){

std::cout << *it << std::endl;

std::cout << << std::endl;
std::for each(c.begin(),c.end(),[](auto &e){

L)

std::cout << e << std::endl;

std::cout << << std::endl;

}

(const auto& e : c){
std: cout << e << std::endl;

std::cout << << std' :endl;

}

(const

t to& e: std::views::all(c)){
std: cout << e << std::endl;

e The C++ Language and standard
library is evolving every 3 vears

LEEVED NNt S \where does that leave you as a

observe some beginner getting started with modern
iterate througgemmes
time.
o These are jus
‘for-loop’ co

All of these techniques can be used
and abstracted upon -- this is a brief
example of language evolution

e The C++ Language and standard
library is evolving every 3 vears

LEEVED NNt S \where does that leave you as a

observe some beginner getting started with modern
iterate througgemmes

time.

SELEEEEEILE The goal of this talk is to help you

‘for-loop’ co . . -
e navigate what is important, and

SEREEEY what to focus on when starting C++
m Usinga

m Or using OUIET aPStIc -

All of these techniques can be used

and abstracted upon -- this is a brief

example of language evolution

5 Questions

e This talk is titled: “Getting Started with Modern C++”
o The landscape of computer programming has changed a great deal since I was a
beginner
o Sotoday I really want to think hard about what it means to get started and be a
beginner, and what questions I might ask.

e So today’s talk will try to answer 5 questions

Why the C++ Programming Language?

What is the C++ Ecosystem?

Is C++ evolving for the future, and is it worth it if I invest time now?
Can you show me some Modern C++?

What Modern C++ features should I focus on?

R whE

11

Question #1: Why the C++
Programming Language?

Why the C++ Programming Language? (1/2)

e C++1is a powerful, versatile, and

expressive language
o Powerful:
m This means in terms of speed, compiled C++
o Versatile:

m C++ can be found with effective use cases in
nearly every domain: finance, games,
business, web, networks, automotive,
robotics, etc.

o Expressive:

m You choose the best abstraction to use in
the language: procedural, object-oriented,
data-oriented, generic, functional, etc.

m C++ attempts to provide zero-cost
abstractions (or tries to provide tools to
create your own)

PROGRAMMING LANGUAGE

FOURTH EDITION

13

https://www.youtube.com/watch?v=rHIkrotSwcc

Why the C++ Programming Language? (2/2)

e The language has also been proven the
last 40+ years -- and continues to power

the software world.
o Whether directly (i.e. applications written in
C++) or otherwise using libraries created in C++
(e.g. Python bindings or wrappers of C++ code)

PROGRAMMING LANGUAGE

FOURTH EDITION

THE CREAToi.or C..

14

Why choose C++ for a new project in 20247

e Performance

o Zero-overhead Principle [cppreference]
o 1l.e.“Don’t pay for what you do not use” and the
language “values efficiency”
e FEcosystem
o Tooling (IDEs, static and dynamic analysis,
linters, build systems, etc.) is widely invested in.
e Portability
o C++can be run on the web (wasm or FOURDILEDITON
emscripten), embedded (small devices, game '
consoles, robotics), and desktop devices.
e Certification
o Various C++ compilers are certified for domains

in safety critical domains (e.g. automotive and
aircraft)

PROGRAMMING LANGUAGE

15

https://en.cppreference.com/w/cpp/language/Zero-overhead_principle

C++ Superpowers [from

C++ is a general-purpose programming language
with a bias towards systems programming that

e isabetterC
a. Ithad time to learn!
e supports data abstraction
a. Information hiding, etc.
e supports object-oriented programming
a. From its Simula roots
e Ssupports generic programming.
a. Forreusable algorithms, data structures, and even
compile-time programming

» & s
. sy 3
& . <,) y . N\ \
}g $. ‘R‘. A\)\

https://www.stroustrup.com/

16

https://www.stroustrup.com/C++.html
https://www.stroustrup.com/bs_faq.html#difference
https://www.stroustrup.com/bs_faq.html#class
https://www.stroustrup.com/bs_faq.html#oop
https://www.stroustrup.com/bs_faq.html#generic
https://www.stroustrup.com/

C++ Superpowers [from Me]

I’ll also go further to add that C++:

e isaproductive language
a. lotsof library support beyond the standard library
e isevolving to support safer data abstractions 4
a. smart pointers, std::optional, ranges, etc. / , \\{ W
e supports multiple programming paradigms including: N
a. generic programming / Object-Oriented / Procedural
b. functional-style programming
1. lambda’s, const, std::function, map (std::transform),
reduce (std::accumulate), filter (std::remove/copy/find_if)
e supports compile-time execution
a. constexpr, meta-programming through templates

17

What is hard about learning the C++ Language?

From my experience teaching and training, there are two things:

1. Understanding the ‘ecosystem’
a. Thisincludes:
1. compilation process, static and dynamic linking
1i. How to structure large-scale and long-lived projects [Lakos]

2. Being disciplined about what features you use
a. When you are first learning the language, it can be difficult to try to do things ‘the
right way’
1. ‘Theright way’ will depend on your domain.
ii. C++ does not have the same guardrails as languages like DLang, Rust, Ada,
Swift, etc. for safety.
1. Thisis a double-edged sword

18

https://www.amazon.com/Large-Scale-Architecture-Addison-Wesley-Professional-Computing/dp/0201717069/

Question #2: \What is the
C++ Ecosystem?

19

C++ Ecosystem of Tools

e Compiler
o g++,clang++, msvc, etc.
e Linker
o 1d
e IDE / Text Editor
o IDEFE’s: Visual Studio, CLion, XCode, etc.
o Text Editor: VIM, VSCode, Sublime, etc.
e Build Systems
o Make, Ninja, etc.
o Cmake - meta-build tool
e Tooling
o Static Analysis (Linters like cppcheck, Misra Check, etc.)
o Dynamic Analysis (Asan, tsan, UBsan)
o Debugging Tools (GDB, LLDB, UDB (Time Travel Debugging), etc.)
o Profilers (e.g. perf)
e Key Libraries to your project
o Testing frameworks (Catch, Google Test)
o Domain specific frameworks (e.g. GUI library, graphics API, sound API, threading library, etc.)

20

https://courses.mshah.io/courses/vim
https://undo.io/

C++ Ecosystem of Tools

e Compiler
o g++,clang++, msvc, etc.

At a minimum this is all you need

e Linker 1. A c_:ompiler
o 1d 2. Alinker
a. (usually ‘hidden’ when you’re first
_) learning)
o Text Editor: VIM, VSCode, Sublime, etc. 3. Atext editor

No need to complicate things and think you
need more when you’re starting out :)

21

https://courses.mshah.io/courses/vim
https://undo.io/

C++ Ecosystem of Tools

e Compiler
o g++,clang++, msvc, etc.

Some tips on using your compiler to make your life

easier:
e Compile with:
o -Wall -Werror -g
o Use the sanitizers
m eg.
e There are nice lesser known tools (at least with
g++) such as -Weffc++ as well
O

Asan, tsan. UBsan

22

https://courses.mshah.io/courses/vim
https://undo.io/
https://developers.redhat.com/blog/2014/10/16/gcc-undefined-behavior-sanitizer-ubsan#enter_ubsan
https://www.youtube.com/watch?v=uYuIKSjZu4w&t=2s

C++ Ecosystem of Tools

For folks just getting started, | like
o cppcheck will help detect bugs and help
encourage you to use more modern
constructs in your code.
Linux users can immediate use:

o sudo apt-get install cppcheck
o cppcheck --enable=all *.cpp

cppcheck

23

https://courses.mshah.io/courses/vim
https://undo.io/
https://cppcheck.sourceforge.io/

C++ Ecosystem of Tools

Debugging tools (whether integrated in your
IDE or the command line) are going to be your

next best friend.

o My recommendation is to at the least
learn GDB ()

m Terminal based debuggers can be
very powerful, scriptable and
provide text-user interfaces for a
nice experience

o Debugging Tools (GDB, LLDB, UDB (Time Travel Debugging), etc.)

24

https://courses.mshah.io/courses/vim
https://undo.io/
https://www.youtube.com/watch?v=uyyEdaW4M8Y

C++ Project Template

There exist nice templates for
exercising a good chunk of a modern
C++ ecosystem

O

O

Here is one from Jason Turner for creating
a CMake project
The latest repository is here:
m https://github.com/cpp-best-practi
ces/cmake template

Use these as inspiration for creating
your own

O

It may also be wise for you to create your
own ‘template’ as you use C++ in your
domain

Most existing templates will probably be
good resources for discovering useful
tools and libraries -- enough so that
expert C++ programmers consider them as
essential enough to put in their default
templates.

C++ Weekly - Ep 376 - Ultimate CMake C++ Starter Template (2023 Updates)

https://www.youtube.com/watch?v=uclOcw9X3e8

25

https://github.com/cpp-best-practices/cmake_template
https://github.com/cpp-best-practices/cmake_template
https://www.youtube.com/watch?v=ucl0cw9X3e8

Question #3: Is C++
evolving for the future, and
IS it worth it if | invest time

now?

What’s really Important?

e What’s really important from this timeline is that the language is
evolving every 3 years

e The language (and compiler vendors) make great efforts to support
backward compatibility

o 1l.e.Code that you wrote in 1998 often still compiles on compilers in 2024.
m This can be extremely valuable when you have long lived and core
infrastructure!
e Isit worth the time and effort to learn C++ and the ecosystem?

o Yes -- Ido not see C++ moving away anytime soon in performance critical
domains.

o Time spent in C++ or alongside other languages will only help you become a better
programmer.

27

C++ History and
Evolution

From C++98 to C++23 and Beyond

Where the language was and where the
language is going

The C++
Programmin
C with Lan%uage ’ Today
Classes Book is C++ 98
Appears released Standardized C++26
I | I I I I
I I I | | I I I | I
1979 1985 1998 2003 2011 2014 2017 2020 2023

28

https://www.stroustrup.com/hopl2.pdf
https://www.lirmm.fr/~ducour/Doc-objets/ISO+IEC+14882-1998.pdf
https://www.lirmm.fr/~ducour/Doc-objets/ISO+IEC+14882-1998.pdf

C++ Modern History (1998-Present Day)

e 1998: -- Original ISO C++ Standard officially adopted
(“C++98”).
o 776 pages.
e 2003: TC1 (“Technical Corrigendum 1”) published (“C++03”).

(e]

e 2005:

(e]

e 2011:

o

(@]
O
e 2014:
O
e 2017:
° 2020:
e 2023:
e 2026:
O
e Note:

A minor revision in 2003, primarily bug fixes for C++98.

TR1 (Library “Technical Report 1”) published.

14 likely new components for the standard library.

“C++0x” ratified = “C++11”.

This was a major update that modernized C++ to its current form in
September of 2011

1353 pages.

C++ now evolves on an ambitious 3-year schedule.

C++14 ratified.

1372 pages -- largely minor improvements to 2011 features

(Will visit shortly)
(Will visit shortly)
(Will visit shortly)

Next C++ Standard currently in the works

Around 2022, what are dubbed as successor languages (cpp2,
Carbon, etc.) also started exploring the evolution of the language

https://en.wikipedia.org/wiki/C%2B%2B

C with
Classes
Appears

The C++
Programming
Language
Book is
released

C++ 98
Standardized

Today

C++26

|
1979

I I I
1985 1998 2003

|
I D I
2011 2014201720202023

Year
1998
2003
2011
2014
2017
2020

C++ standards

ISO/IEC Standard
14882:1998[34]
14882:2003!2°]
14882:201136]
14882:201437]
14882:2017138
14882:2020!"7]
14882:2024

Informal name
C++98

C++03

C++11, C++0x
C++14, C++1y
C+E17, CHr1z
C++20, C++2a
C++23. C++2b
C++26, C++2c

https://en.wikipedia.org/wiki/C%2B%2B

Question #4: Can you show
me some Modern C++7?

(i.e. 2003 C++ versus Modern C++)

30

A Classic Example - wc (word count)

WC(1) BSD General Commands Manual

e A good way to learn or practice We(1)
your C++ is to implement various &

command line programs
o If you’re not familiar with the ‘wc’
program, it is a helpful utility for

counting words, lines, and bytes in a R .
The we utility displays the number of lines,

wc —— word, line, character, and byte count

SYNOPSIS
wc [-clmw] [file ...

fﬂe words, and bytes contained in each input file, or
I 1 standard input (if no file is specified) to the
i Let S 1001{ at a Slmp]'e program standard output. A line is defined as a string
and Compare C++98 versus C++20 of characters delimited by a <newline> character.
Characters beyond the final <newline> character
(EiIl(i l)EBS]C)Il(i) (3()(163 will not be included in the line count.
o NOte: A word is defined as a string of characters
0 If you’re more Senlor and llstening to delimited by white space characters. White space
: characters are the set of characters for which
this talks perhaps this is an 1nterest1ng the iswspace(3) function returns true. If more
‘take home’ projects for interviewing than one input file is specified, a line of cumu-
candidates -- though I have many lative counts for all the files is displayed on a

separate line after the output for the last file.

more thoughts on tech interviews :)

12 struct wcInfo{
3 size_t bytes;

wc98 (word count, C++ 98 standard) %g size_t lines;

size_t words;

16 // @-initialize everything in constructor
17 wcInfo(){
18 bytes=0;

lines=0;
words=0;

(wc9o8.cpp)
/// Helper function for returning file size

o g+t -g -Wall -std=c++98 chgcpp -0 wc98 size_t GetFileSize(const charx filename){

std::ifstream myFile(filename, std::ios::ate | std::ios::in | std::ios::binary);

Here,s the Core return myFile.tellg();
implementation of a word e e T g S i i
wcInfo result;
count (wc) program. N
// Open file for input
0 It Works’ and iS Written in pure std::ifstream myFile(filename,std::ios::in);

// Iterate through each line and each word
CJ-F-FE)EB (:()(153. // using stringstream to parse 'whitespace'

if(myFile.is_open()){
result.bytes = GetFileSize(filename);
std::string line;
while(std::getline(myFile, line)){
++result.lines;
std::stringstream s(line);
std::string word;
while(s >> word){
++result.words;
}
}
Yelse{
std::cerr << "File could not be read: " << filename << std::endl;
}

return result;

14 struct wcInfo{

15 size_t lines{@};
16 size_t words{@};

wc23 (word count, C++ 23 standard) 7, i« oyeeston
L9

20 /// Main function for retrieving the file size
21 wcInfo wc(const charkx filename){

22 wcInfo result{};
23 // Open file for input
24 std::ifstream myFile(filename,std::ios::in);
® (XAJ(ZZZE3.CII)I)) 25
_ 26 // Helper lambda function for counting words in line
O g++ _g -Wall -Std_C++23 WCZS'Cpp 27 auto wordsInLine = [](auto line){
28 size_t count{};
-0 WC23 29 std::stringstream s(line);
30 std::string word{};
e Same program as before, but 31 while(s >> word){
32 ++count;
3 3 83 }
several improvements using % LOn—
35 15
++ ++ 36
MOdern C 11 through C 23 37 // Iterate through each line and each word
38 // using stringstream to parse 'whitespace’
fe atures 39 if(myFile.is_open()){
40 result.bytes = std::filesystem::file_size(filename);

I’ll highlight a few for " b

while(std::getline(myFile,line)){
. 43 ++result.lines;
CompaI'ISOl’l 44 result.words += wordsInLine(line);
45 }
46 Yelse{
47 std::cerr << "File could not be read: " << filename << std::endl;
48 }
49
50 return result;
51 }

60 // structured binding
61 auto[lines, words, bytes] = wc(argv[1]l);
62 std::println("\t{*\t{}\t{}",1lines,words, bytes);

14 struct wcInfo{

size_t lines{0};
size_t words{0};
size_t bytes{0};

12 struct wcInfo{ 15
13 size_t bytes; 16
14 size_t lines; <7
15 size_t words; FEBY
16 // @-initialize everything in constructor i
17 wcInfo(){

18 bytes=0; 22
19 lines=0; 23
20 words=0; =
21 } >

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

220

Observe on the the right side we can more
concisely default initialize members.

This is useful for Plain Old Data (POD)
data types

20 /// Main function for retrieving the file size
21 wcInfo wc(const charkx filename){

wcInfo result{};
// Open file for input
std::ifstream myFile(filename,std::ios::in);

// Helper lambda function for counting words in line
auto wordsInLine = [](auto line){

size_t count{};

std::stringstream s(line);

std::string word{};

while(s >> word){

++count;

}

return count;
s

// Iterate through each line and each word
// using stringstream to parse 'whitespace’
if(myFile.is_open()){
result.bytes = std::filesystem::file_size(filename);
std::string line{};
while(std::getline(myFile,line)){
++result.lines;
result.words += wordsInLine(line);
}
}else{
std::cerr << "File could not be read: " << filename << std::endl;

}

return result;

// structured binding
auto[lines, words, bytes] = wc(argv[1]l);
std::println("\t{}X\t{}\t{}",lines,words, bytes);

|

14 struct wcInfo{

15 size_t lines{0};
16 size_t words{@};
17/ size_t bytes{0};
18 };

19

20 /// Main function for retrieving the file size
21 wcInfo wc(const charkx filename){

22 wcInfo result{};
23 // Open file for input
et e De TR TN C U TONK TOT ST CUT NGB TGRS 1ZE 24 std::ifstream myFile(filename, std::ios::in);
25 size_t GetFileSize(const charkx filename){ 25
26 std::ifstream myFile(filename, std::ios::ate | std::ios::in | std::ios::binary); 26 // Helper lambda function for counting words in line
27 return myFile.tellg(); 27 auto wordsInLine = [](auto line){
20 28 size_t count{};
5 5 29 std::stringstream s(line);
® No std::filesystem in C++98, so need 30 std::string word{};
)) . . 31 while(s >> word){
hack for reading file size, versus a 1-line 32 ++count;
83 }
function call in Modern C++ L return count;
- :
37 // Iterate through each line and each word
38 ;¥ using stringstream to parse 'whitespace’
39 if(i i () {

40 result.bytes = std::filesystem::file size(filename);

41 std::string line{};

42 while(std::getline(myFile, line)){

43 ++result.lines;

44 result.words += wordsInLine(line);

45 }

46 Yelse{

47 std::cerr << "File could not be read: " << filename << std::endl;
48 }

50 return result;

60 // structured binding
61 auto[lines, words, bytes] = wc(argv[1]l);
62 std::println("\t{}X\t{}\t{}",lines,words, bytes);

|

14 struct wcInfo{

15 size_t lines{0};
16 size_t words{@};
17/ size_t bytes{0};
18 };

19

20 /// Main function for retrieving the file size
21 wcInfo wc(const charkx filename){

wcInfo results = wc(argv[1l]); 22 v/vjlgfo r?;lt]g};)
. s n n 23 pen file for input
std::cout << ite 1 "ti" 24 std::ifstream myFile(filename,std::ios::in);
<< resuLts. Llnes << 25
<< results.words << L g? //tHelpez %arlr_\l‘)da fur[u]:’fiog f;%' cc)n{.mting words in line
<< results.bytes << "\t" << std::endl; 28 aure worszzg_inio;nt{}?u o ne
= - 29 std::stringstream s(line);
e NO StruCtured blndlng 30 std::string word{};
. 31 hile(s >> word){
o Both a pro and con -- need to still s S s
: 83 }
be careful of ordering of struct s S
o Easy however to retrieve local S
. 37 // Iterate through each line and each word
Varlables 38 /. using strin;:trea; to rl)arsz 'whziatesvr\:gce'
. 39 if(myFile.is_open()){
® Can use auto 1n C++11 and beYOHd 40 result.bytes = std::filesystem::file_size(filename);
0 41 std::string line{};
o Potentially more ‘refactorable 42 while(std: :getline(myFile, 1ine))
) 43 ++result.lines;
COde /YA result.words += wordsInLine(line);
. 45 }
o Use type when there is a need to ‘6 Yelsel
. . N std::cerr << "File could not be read: " << filename << std::endl;
be explicit }
® Can use std::println in C++23 with fetoiiiresyy
format StI'il’lgS 60 // structured binding

autollines, words, bytes] = wc(argvlll);
std::println("\t{}X\t{}\t{}",lines,words, bytes);

// Iterate through each line and each word
// using stringstream to parse 'whitespace'
if(myFile.is_open()){
result.bytes = GetFileSize(filename);
std::string line;
while(std::getline(myFile,line)){
++result.lines;
std::stringstream s(line);
std::string word;
while(s >> word){
++result.words;

}
}
}elseq{
std::cerr << "File could not be read: " << filename << std::endl;

}
e Local lambda functions

o Simplifies algorithm
m Measure to see if performance
is impacted
o Uselambda if function only
needed once, or otherwise as a tool
for encapsulation

14 struct wcInfo{

15
16
17

18 };

19

size_t lines{0};
size_t words{0};
size_t bytes{0};

20 /// Main function for retrieving the file size
21 wcInfo wc(const charkx filename){

22
23
24

wcInfo result{};
// Open file for input
std::ifstream myFile(filename,std::ios::in);

// Helper lambda function for counting words in line
auto wordsInLine = [](auto line){

size_t count{};

std::stringstream s(line);

std::string word{};

while(s >> word){

++count;

}

return count;
b

// Iterate through each line and each word
// using stringstream to parse 'whitespace’
if(myFile.is_open()){
result.bytes = std::filesystem::file_size(filename);
std::string line{};
while(std::getline(myFile,line)){
++result.lines;
result.words += wordsInLine(line);
}
Yelse{
std::cerr << "File could not be read: " << filename << std::endl;

}

return result;

// structured binding
auto[lines, words, bytes] = wc(argv[1]l);
std::println("\t{}X\t{}\t{}",lines,words, bytes);

14 struct wcInfo{

15 size_t lines{@};
16 size_t words{@};

wc23 (word count, C++ 23 standard) 7, i« oyeeston
L9

20 /// Main function for retrieving the file size
21 wcInfo wc(const charkx filename){

22 wcInfo result{};

. . 23 // Open file for input

o Full list of lmprovements 24 std::ifstream myFile(filename,std::ios::in);

3 25
o}
struct with constructor needed 26 // Helper lambda function for counting words in line

m Need to carefully default initialize 27 4Lt6 wordsInLine = [)(auta line)t

No std::filesystem, so need hack for reading 28 size_t count{};
file size 29 std::stringstream s(line);

. . 30 td::stri d{};
No structured binding 31 Zhﬂei’fﬂgwﬁ?é)i}

m Both a pro and con -- need to still be 32 ++count;
careful of ordering of struct 33 ¥
m Easy however to retrieve local = . CCLUZHpcOUnT:
variables 36 '
Local lambda functions 37 // Iterate through each line and each word
- Slmphﬁes algorithm 38 // using stringstream to parse 'whitespace’
¢ X 39 if(myFile.is_open()){
u Use lambda if function Only needed 40 result.bytes = std::filesystem::file_size(filename);

once, or otherwise as a tool for 41 std::string line{};
encapsulation 42 while(std::getline(myFile,line)){

. 43 1t.lines;
Can use auto in C++11 and beyond 7 e RS

m Potentially more ‘refactorable code’ 45 }

m Use type when there is a need to be 46 lelse{ _)
explicit 47 std::cerr << "File could not be read: " << filename << std::endl;

. . . 48 }
Can use std::println in C++23 with format 49

strings 50 return result;

51 }

60 // structured binding

61 auto[lines, words, bytes] = wc(argv[1]l);

62 std::println("\t{*\t{}\t{}",1lines,words, bytes);

result.words += wordsInLine(line);

wc23 (word count, C++ 23 standard)

e (wc23.cpp)
o g++-g-Wall -std=c++23 wc23_1.cpp -0 wc23_1

e Within our word counting function, we can make a further revision
by using std::tuple
o This removes any temporary or ‘one use’ structs where we need to return multiple
values.

o Furthermore, our function at this point is fully encapsulated
m The function is merely an interface generating an output given inputs, and
few details are otherwise exposed to the caller.
14 std::tuple<size_t,size_t,size_t> wc(const charx filename)({
15 size t lines{};
16 size t words{};

17 size_t bytes{};

return std::make_tuple<size_t,size_t,size_t>(lines,words,bytes);

Question #5: What Modern
C++ features should | focus
on?

What Modern C++ features should I focus on?

The real trick is to work
iteratively

(@)

For me, I often write code in the
most simple way.

Then I figure out if there is some
abstraction I can use to make
code:

m Safer

m More understandable

m More amenable to change

(while designing)

m More generic (if a library)
Over time your ‘muscle memory’
will help you exercise features
correctly (for your definition of
‘correct’ on your project)
otherwise on an earlier iteration

2 struct weInfo{

tialize everything in constructor
weInfo(){

eSi
fstream myFile(
myFile.tellg();

/1/ Main ion for retrieving the file size
cInfo we(const charx filename){
wcInfo result;

// Open file for input
std::ifstream myFile(filename,std::ios::in);

// Tterate through each line and each word
// using stringstream to parse 'whitespace'
if(myFile.is_open()){
result.bytes = GetFileSize(filename);
std::string line;
while(std: :getline(myFile,line)){
++result.lines;
std::stringstream s(line);
std::string word;
while(s >> word){
++result.words;

}
Yelse{

std::cerr << "File could not be read: " << filename << std::endl;
b

return result;

n | std::ios::binary);

t bytes{o};

20 /// Main function for retrieving the file size
21 welnfo we(const charx filename){

weInfo result{};

// Open file for input

std::ifstream myFile(filename,std::ios::in);

// Helper lambda function for counting words in line
auto wordsInLine = [1(auto line){
count{};
tringstream s(line);
1:istring word{};
while(s >> word){
++count;
}
return count;
b

// Iterate through each line and each word
// using stringstream to parse 'whitespace'
if(myFile.is_open()){
Tesult.bytes = std::filesystem::file_size(filename);
std::string line{};
while(std::getline(myFile,line)){
++result.lines;
result.words += wordsInLine(line);
}
Yelse{
std::cerr << "File could not be read: " << filename << std::endl;
b

return result;

// structured binding
es

word counter C++98 code

word counter C++20 code

41

A Very Quick Overview

To the right you’ll see a
summary of just the new
features in C++11!

You can find most all of the

C++11 updates here:
m https://en.cppreference.co
m/w/cpp/11

I now want to focus on a few of
the new language and library
features from C++11 to 23 that I
think every C++ programmer
should know in this short
duration

o Note: This is not an exhaustive list

-- but a few that I find myself
often using!

sauto and decltype

« defaulted and deleted functions

e« final and override

e trailing return type

e rvalue references

move constructors and move assignment operators
e scoped enums

e constexpr and literal types

e list initialization

delegating and inherited constructors

« brace-or-equal initializers

enullptr

« long long

scharl6é t and char32 t

« type aliases

e variadic templates

e generalized (non-trivial) unions

¢ generalized PODs (trivial types and standard-layout types)
Unicode string literals

user-defined literals

e attributes

e lambda expressions

s noexcept specifier and noexcept operator
salignof and alignas

« multithreaded memory model

« thread-local storage

e GC interface (removed in C++23)

srange-for (based on a Boost library)
estatic assert (based on a Boost library)

Headers

e <array>

e <atomic>

e <cfenv>

e <chrono>

e <cinttypes>

e<condition variable>

e <cstdint>

e <cuchar>

e<forward list>

e <future>
e<initializer list>
e <mutex>

e <random>

e<ratio>

e <regex>

e <scoped allocator>
e<system error>

e <thread>

e <tuple>

e <typeindex>

e<type traits>

e <unordered_map>

e <unordered_set>

42

https://en.cppreference.com/w/cpp/11
https://en.cppreference.com/w/cpp/11

A Few Examples to Focus on

e WhileI cannot highlight everything in this duration -- here are

several features I enjoy in Modern C++:
o C++11
m nullptr
m auto
m ranged-for
m constexpr
m Smart Pointers
m Move Semantics
m Lambda’s
m thread
m unordered_map
o C++20
m Span
m Ranges

43

nullptl‘ (Introduced in -std=c++11)

e Purpose:
O Eliminate ‘Surprises, Where n]_]_llptr void PointerParam(int* value){ std::print(
. void IntegerParam(int value){ std::print(
can be treated as an integer -- Clear [FEE—_—_—_—_
when you are testing for ‘null’

versus testing for ‘0’
e When to Use: inte pote.

int* pBad

o Anywhere you previously used it integer = ¢;
‘NULL’ (integer ==0){ }

e Example Notes:
o See Core Guideline: il

PointerParam(

https://isocpp.github.io/CppCore Steier Bt
Guidelines/CppCoreGuidelines#es

47-use-nullptr-rather-than-0-or-n
ull

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#es47-use-nullptr-rather-than-0-or-null
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#es47-use-nullptr-rather-than-0-or-null
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#es47-use-nullptr-rather-than-0-or-null
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#es47-use-nullptr-rather-than-0-or-null

auto (Introduced in -std=c++11)

Purpose:

o Placeholder for a type that will be
deduced later

When to Use:

o Useful when typing a long type
would be redundant
Useful for ‘generic code’
Useful for making code more
malleable

o Not useful if you need to be very
specific about type

Example Notes:

o ‘auto’ greatly simplifies generic
programming (see lines 8-10) --
effectively this is the equivalent of
a template.

See video for more

auto sum(const auto a, const auto b){
a+ b;

int main(){

std::vector v{1,3,5,7,

(auto elemﬁ v){
std::println(,sum(elem,1));

}

auto start = v.begin();

https://www.youtube.com/watch?v=ITeJbESNH7A&list=PLvv0ScY6vfd8j-tlhYVPYgiIyXduu6m-L&index=72

l‘anged-for (Introduced in -std=c++11)

-t Student{
mID;
long mGrade;

e Purpose: t main(){
o Iterate through a collection

Y When to Use: std::vector<Student> students = {}
o When your intent is to iterate
through an entire range using
iterators (;iéfiy?piﬁ?ﬁ\(StUdentS)feLem.mID, elem.mGrade) ;

e Example Notes:
o Observe in for loop the use of ‘&’
o Observe in the bottom-right that
the ranged-for is transformed to

use itera.tors std::vector<Student, std::allocator<Student> > students = std::vector<Student, std::allocator<Studen
i
. std::vector<Student, std::allocator<Student> > & _ rangel = students;
O VIdeO for more std:: wrap_iter<Student *> _ beginl = _ rangel.begin();
std::__wrap_iter<Student *> _ endl = _ rangel.end();
for(; std::operator!=(_ beginl, _ endl); _ beginl.operator++()) {
Student & elem = _ beginl.operator*();
std::println(std::basic_format_string<char, long &, long & ("{} - {}"), elem.mID, elem.mGrade);
}
¥
return 0:

https://www.youtube.com/watch?v=arbvC95H4SQ&t=5s

ConSteXpr (Introduced in -std=c++11)

1 // @file constexpr.cpp £ A~ ®output..~ YFilter..~ & Librar
. 2 // Compile and run: g++ -std=c++23 constexpr.cpp -0 prog && = .
L Purpose. 3 #include <array> main:
[: 3 I g // 'auto' useful for supporting 'generic' programming 401260 BUS]) 2600
o Purther enable Complle_tlme 6 // Note: Still need to add 'qualifiers' like 'const' 401107 mov %rsp, %rbp
. i constexpr auto sum(const auto a, const auto b){ -
COmputatIOI’lS 8 return a + b; 40110a movl $0xc, -0x4(%rbp)
9 1S B
° 10 401111 mov $0xc, %eax
e When to Use: "
12 401116 pop %rbp
VV 1 13 // 'static' data is baked into the compiler at compile-
o hen you Want Somethlng 14 // 'constexpr' again 'hints' data is known at compile-t 404417 e
¢ 9 . 15 // for computation
COHSt and aISO useable (lf 16 static constexpr std::array a{11,33,65,77,99};
. . . 17
possﬂgle) at Complle-tlme 18 // computation of all Gompile-time data
19 constexpr auto result = sum(1,a[0]);
20
o Can enable very powerful . —
. 22
meta-programming

e Example Notes:
o This program really just
outputs a ‘12’ (0xC)
o More introduction here

47

https://www.youtube.com/watch?v=Ia0MizHPLUA

Smal‘t POinterS (Introduced in -std=c++11)

e Purpose:

o Wrap a ‘pointer’ for safer C++ code and focus
on ‘ownership’ and ‘lifetime’ of allocated Object{

memory . Ob].'ect() { std::cout <<

m If you make everything ~Object() { std::cout <<

std::unique_ptr -- you effectively have
much safer code!

e When to Use:
o Almost always use std::unique_ptr if only one
owner
o Consider shared_ptr if managing
complicated lifetimes {
n Consider std::weak_ptr when std::shared_ptr<Object> mySharedObjectPtr;
non-owner needs access when pointer ¢
is not null or otherwise expired. std::shared ptr<Object> mySharedObjectPtr2 = std::make shared<Object>();
o May need regular raw pointers when
interfacing with C APIs
e Example Notes:
o More on pointers
o More on the ‘why’ of smart pointers
o Consider that you can also create your own
‘smart pointers’ as well!

* argv[]){

mySharedObjectPtr = mySharedObjectPtr2;

One example with only ‘shared_ptr’ which counts the number of
‘strong references’ (i.e. other shared_ptr) to it. 48

https://www.youtube.com/watch?v=2R5cjpi9Fzw&t=3s
https://www.youtube.com/watch?v=nd2X5q_rXlc

Move Semantics antroduced in -std=c++11) T

T(i{ std::cout << << std::endl;}
~T(){ std::cout << << std::endl;}
T(T& copy){
std::cout << << std::endl;
}
e Purpose:
o For efficiency and idea of ‘ownership’ T(T&& old){
m_string = old.m strlng
old.m string =
(safety) }
e When to Use: 7 sgnaent. ops
o Whenever you want to avoid copies and (this!=sold){
¢ , p , m string = old.m strlng
ensure ‘one’ copy of data has an ‘owner old.m_string =
m Think of using in tandem with Fetarn *
std::unqiue_ptr }
e Example Notes: e
o std::move does not ‘move’ -- but rather casts ¥
to an ‘rvalue reference’ that enables move g s

assignment operator to be called. D e ah
If you do not have move constructor and/or }

move assignment operator, fallback will be
to copy constructor and/or copy assignment
operator. T b;
Video on Move ’

https://www.youtube.com/watch?v=2gUqyt5JTtM&t=2s

Lambdas (Introduced in -std=c++11)

int main(){
PY Purpose. std::vector v{1,3,5,7,9};
o Make code more beautiful -- i.e. a Ak, Squetie. ek S
better syntax than a functor ks
o In many ways to encourage :
. auto printer = [](int elem){
® When to Use: std: :printin(,elem);
o Writing smaller functions that are K
used in algorithms
o As‘local’ functions encapsulated in a
larger function , ‘
o Example Notes: std::ranges::for each(std::views::transform(v,square),printer);
o I've omitted the ‘capture’, but it may std::ranges: :for_each(v,printer);

be useful to understand functors first

¢)3 }
to understand how ‘state’ is stored as bt o L. ST e
a member of a functor.

- ie Lambdas in C++11 and mike@mike-MS-7B17:features$ g++ -std=c++23 lambda.cpp -0 prog && ./prog

beyond are syntactic sugar for
functors. 49
More videos 3

https://www.youtube.com/watch?v=6otobPdNFz4&t=2s
https://www.youtube.com/watch?v=R1bwTAarnz4&t=1s

Thread (Introduced in -std=c++11)

e Purpose:
o Usually for performance, but
sometimes nature of task
splits better into ‘jobs’

e When to Use:

o Again, usually for
performance

Consider using std::jthread so
you don’t have to worry about
‘joining’ threads
o Consider std::async
e Example Notes:
o More Videos

7 THE R 4

auto lambda = [J(int x){
std::cout <<

std::cout << << X << std::endl;

std::vector<std::jthread> threads;

for(int 1=0; 1 < 10; i++){
threads.push_back(std::jthread(lambda,i));
)

std::cout << << std::endl;

s

<< std::this_thread::get_id() << std::endl;

https://www.youtube.com/watch?v=Q7gqDzOFO7E&list=PLvv0ScY6vfd_ocTP2ZLicgqKnvq50OCXM&index=3

Unordered_map (Introduced in -std=c++11)

e Purpose:
o Improve performance of map from
]-ng(n) tO O(l)]-n average case . r:idir:]ft)warderedﬁmapqnt,std: :string> database;
m unordered_set and other database. insert({124, “Ankur 1} ;
unordered containers also (database. contains (123)){
introduced o T eesll =

e When to Use:

. databaée[1=
o Whenever ordering does not

IIlE{ttEBI (%uto ﬁonst& [key,vélue]r: database) {
. . std::cout << key << << value << std::endl;
structured bindings handy for }
iteration it
std::println(.
C}(3I1€3r211137 a CiI()I)-—iIl r(3{)121(3€31116311t database.bucket count(),database.load factor());

for std::map }

e Example Notes:
o More Videos (less trivial example)

mike@mike-MS-7B17:features$ g++ -std=c++23 unordered map.cpp -0 prog & ./prog
User 123 exists...continuing

125 | CppIndia

124 | Ankur

123 | Mike

bucket count = 13 and load factor=0.23076923

https://www.youtube.com/watch?v=pvVrNwZzCgk

Std::Span (Introduced in -std=c++20)

e Purpose:
o Refers to an object that is contiguous
(i.e. array, vector)
m Spanis a ‘fat-pointer’ with a
‘length’ and pointer to data
e When to Use:

o Itiseffectively a ‘view’ of data that can
read/write
Because it is a fat pointer, it prevents
an array to decay to a pointer -- so size
information is preserved
Useful if you want to pass any sized
contiguous data structure into a
function and not have it ‘owned’, but
may want to read/write data.

e Example Notes:
o More Videos

void PrintIntData(std::span<int> param){
std::cout << param.extent << std::endl;

(param.extent == std::dynamic_extent){
std::cout << << std::endl;
} {
std::cout << << std::endl;
}
std::cout << << param.size() << std::endl <<

(auto& elem: param){
std::cout << elem <<

}
std::cout <<

}

int main(){

std::array<int, 5> arr = {2,4,6,8,10};

std::span<int, 5> mySpan{arr};
std::cout << mySpan.extent << std::endl;

PrintIntData(arr);
PrintIntData(mySpan);
PrintIntData(mySpan.subspan(1,3));

std: :vector<int> myVector = {1,2,3,4,5,6, ¥
PrintIntData(std::span(myVector.begin(),3));
PrintIntData(myVector);

https://www.youtube.com/watch?v=OQu2pZILjDo&t=1s

Ranges (Introduced in -std=c++20)

int main(){

° Purpose. std::vgctor V{,' 5,798
auto square = [](int x){
o Make code more composable and XX ;
}i
less error-prone 7 e
e When to Use: astaprinter = [Tt stel{
o Anywhere in the STL you were K

passing in two iterators to iterate

over a collection

In combination with views, can

perform ‘lazy’ evaluation (for

infinite ranges, or otherwise
optimization purposes) }

std::ranges::for each(std::views::transform(v,square),printer)

std::ranges::for_each(v,printér);

"lambda.cpp" 33L, 849B written
e Example Notes:
o You’ll need C++20 for ranges, but
generally speaking ranges are the B
path forward. e

mike@mike-MS-7B17:features$ g++ -std=c++23 lambda.cpp -0 prog && ./prog

Wrapping up and More Resources

Further C++ resources and training materials

The full C++ playlist

o https:/www.youtube.com/plavlist

?list=PLvv0ScY6vidowB{lFof6ynlD
OQuaeKYzvc

Classes Part 33 - Nested Classes | Modern Cpp Series Ep. 98
N

Functors() - Function objects - functions with state | Modern Cpp Series Ep. 99

« 10K viev

Lambda's Part 1 C++ Lambdas Part 1 - Unnamed function objects (closures) in C++ | Modern Cpp Series Ep. 100!!!
[10{} Unnamed

Function Objects M

Modern C++
il

Classes 34
‘mutable’ and
the M&M Rule

Modern C++

Wi Wilke

Lambda's Part 3
(Capturing
[this] and [*this]

(argc.argv.envp)

Modern C

[The many uses
of the 'using’
keyword

Madern C ++

https://www.youtube.com/playlist?list=PLvv0ScY6vfd9wBflF0f6ynlDQuaeKYzyc
https://www.youtube.com/playlist?list=PLvv0ScY6vfd9wBflF0f6ynlDQuaeKYzyc
https://www.youtube.com/playlist?list=PLvv0ScY6vfd9wBflF0f6ynlDQuaeKYzyc

Further C++ resources and training materials

Software Design Patterns - Command Pattern Explanation and Implementation in C++

e (C++ Software Design & Patterns |- Bl - v v

. Patterns g \'34:31)
© httD S ://WWW.Voutub e .C O m/DlaVIISt Design Patterns - Singleton Pattern | Explanation and Implementation in C++
?list=PLvv0ScY6vfds8j-tlhYVPYgily - 17

Xduu6 L Patterns g \129:09)
Design Patterns - Factory Method Pattern Explanation and Implementation in C++

PY C++ Concurrency _ d@ Mike Shah - 5.6K views - 2 years ago

Patterns _gl\(21:11)
O httDS ://WWW'Voutube'Com/DlaVIISt Design Patterns - Factory Method Pattern Adding More Power to Count Allocated Objects
?list=PLvv0ScY6vfd ocTP2ZLicggK |= S Ba—.
Patterns g \V13:36)
nvg500CXM

Design Patterns - The Extensible Factory Pattern in C++ | Register Objects at Runtime

— d@ Mike Shah + 2K views * 2 years ago

Patterns g \(17:51}

Design Patterns - Iterator Pattern Explanation and usage with STL in C++

— d@ Mike Shah + 1.6K views * 2 years ago

Patterns 4 \(17:50}

CLECLRERENEIINSE R The Observer Design Pattern in C++ - Part 1 of n - A simple implementation
The

— [Mike Shah - 3.8K views * 11 months ago

CEUCUREREUEIUES R The Observer Design Pattern in C++ - Part 2 of n - Extensibility and Abstraction

The Mike Shah + 1.7K 1 h
— ObSeI’VeF ike Shah views months ago
Part 2'of n

(20:16 |

https://www.youtube.com/playlist?list=PLvv0ScY6vfd8j-tlhYVPYgiIyXduu6m-L
https://www.youtube.com/playlist?list=PLvv0ScY6vfd8j-tlhYVPYgiIyXduu6m-L
https://www.youtube.com/playlist?list=PLvv0ScY6vfd8j-tlhYVPYgiIyXduu6m-L
https://www.youtube.com/playlist?list=PLvv0ScY6vfd_ocTP2ZLicgqKnvq50OCXM
https://www.youtube.com/playlist?list=PLvv0ScY6vfd_ocTP2ZLicgqKnvq50OCXM
https://www.youtube.com/playlist?list=PLvv0ScY6vfd_ocTP2ZLicgqKnvq50OCXM

sSummary

e (C++isagreat language, and there is always room to grow
with it
o You do not need to learn every feature -- but using some of the
modern ones will make your life easier
o Doing small projects (e.g. building a game, an app, etc.) is how you
will improve and see these features in context.
m Iencourage you to read as much code as you write.

e C++Iforesee continuing to be the leading language for
performance-driven applications, and I think that will
trend will continue to drive its evolution alongside more
safety features

e C++1is here to stay, and it is a language well worth
learning

{ {C +}

CppIndia
N

Cpplqhdiaéon 2024

e C++ festival of India.

{C +}

CppIndia

23 & 24

Getting Started with Modern C++

having me! & with Mike Shah

Gold

think-cell’ Social: @MichaelShah

L Web: mshah.io

F=TaT=r= Courses: courses.mshah.io
10:00 - 11:00 IST Sat, August 24, 2024 b

(12:30 AM - 1:30 AM EDT - Sun. August 25, 2024) @3 YouTube

www.vyoutube.com/c/MikeShah
http://tinyurl.com/mike-talks

60 minutes with Q&A
Introductory/Intermediate Audience

https://twitter.com/MichaelShah
http://mshah.io
http://courses.mshah.io
http://www.youtube.com/c/MikeShah
http://tinyurl.com/mike-talks

